Approximation Algorithms for Fair Range Clustering

Sedjro S. Hotegni, Sepideh Mahabadi, & Ali Vakilian ICML, 2023

Jinwon Park, Jihu Lee January 19, 2024

Seoul National University

Fair range clustering problem

- Suppose data points are from ℓ different demographic groups
- Target is to pick k centers with the minimum $\ell_p\text{-clustering cost}$
- Each group is at least *minimally represented* in the centers set and *no group dominates* the centers set

This paper provides an efficient constant factor approximation algorithm for the fair range $\ell_{\it p}\text{-clustering}$

Main contribution

- finding an approximate functional solution $(\boldsymbol{x},\boldsymbol{y})$ for an LP-relaxation of the Fair range clustering problem
- rounding the fractional solution to an integral solution with $e^{O(p)}$ -approximation

- set of n points are given in a metric space (P, d)
- each points belongs to one of the ℓ disjoint demographics $P = P_1 \uplus P_2 \uplus \cdots \uplus P_\ell$
- $D \subseteq P$: set of clients
- $F \subseteq P$: set of facilities
- $[\alpha_i, \beta_i]$: interval for a number of centers for each group $i \in \ell$ i.e. $|D \cap P_i| \in [\alpha_i, \beta_i]$ for $i \in \ell$

Constant Factor Approximation Algorithm

K-center problem can be stated as follow;

$$\min\sum_{v\in D, u\in P} w_v c_{vu} x_{vu}$$

subject to

 $\sum_{u \in F} x_{vu} = 1$ for each $v \in D$ $x_{vu} \leq y_v$ for each $v \in D, u \in F$ $\sum_{v \in D} y_v \leq k$ $x_{vu} \in \{0, 1\}$ for each $v \in D, u \in F$ $y_v \in \{0, 1\}$ for each $u \in F$

where y_v indicates the location v is selected as a center and x_{vu} indicates if location u is assigned to the center at v.

Here demand w_v specifies the number of clients present at that location $u \in N$

K-center problem is a NP hard problem.

(Charikar et al, 2002) suggests linear programming relaxation to the integer program by replacing 0-1 constraints as

$x_{vu} \ge 0$	for each $v \in D, u \in F$
$y_v \ge 0$	for each $u \in F$

Theorem

1.1 For all $p \in [1, \infty)$, there exists a constant factor approximation algorithm for fair range k-clustering with the ℓ_p -objective that runs in polynomial time

LP-relaxation of Fair range clustering algorithm

$$\min\sum_{v\in D, u\in F} w(v) \cdot d(v, u)^p x_{vu}$$

subject to

$$\begin{split} \sum_{u \in F} x_{vu} &\geq 1 & \forall v \in D \\ \alpha_i &\leq \sum_{u \in P_i} y_u \leq \beta_i & \forall i \in [\ell] \\ & \sum_{u \in F} y_u \leq k \\ & 0 \leq x_{vu} \leq y_u & \forall v \in D, u \in F \end{split}$$

- For rounding, the paper proposes a new LP relaxation called Structured LP which is a simplification of Fair Range LP via theorem above.
- Structured LP is useful for rounding since the polyhedron constructed by the constraints of Structured LP is half-integral.
- A solution to an Structured LP has value either 0, 1/2 or 1.

$\mathsf{Structured}\ \mathsf{LP}$

$$\min\sum_{v\in D'} w'(v) \cdot \Delta(v)$$

such that

$$\begin{aligned} \alpha_i &\leq \sum_{u \in F_i} y_u \leq \beta_i & \forall i \in [\ell] \\ & \sum_{u \in F} y_u \leq k \\ & \sum_{u \in \mathcal{B}(v)} y_u \geq 1/2 & \forall v \in D' \\ & \sum_{u \in \mathcal{P}(v)} y_u \leq 1 & \forall v \in D' \\ & y_u \geq 0 & \forall u \in F \end{aligned}$$

- $\mathcal{R}(v) := \left(\sum_{u \in P} x_{vu}^* \cdot d(v, u)^p\right)^{1/p}$ is the fractional distance of a unit of demand at location v w.r.t the optimal solution (x^*, y^*)
- $\mathcal{B}(v) := \{u \in F | d(v, u) \le 2^{1/p} \cdot \mathcal{R}(v)\}$ is the set of facilities at distance at most $2^{1/p} \cdot \mathcal{R}(v)$ from v
- $\mathcal{P}(v)$ is a super ball of v that consists of $\mathcal{B}(v)$ and a set of private facilities of v
- $\Delta(v):=d(v,v')^p+\sum_{u\in\mathcal{P}(v)}\left(d(v,u)^p-d(v,v')^p\right)$ is the minimum distance of v to facilites

Theorem

Given an instance (D, w) of fair range clustering with ℓ_p -cost and an optimal fractional solution (x, y) of Fair Range LP(D, w) with cost OPT_D , there exists a polynomial time algorithm that returns a set of locations $D' \subset D$ and a demand function $w': D' \to \mathbb{R}$ such that

- 1. For every pair for v_i, v_j in D', $d(v_i, v_j) \ge 2^{1+1/p} \max\{\mathcal{R}(v_i), \mathcal{R}(v_j)\}$
- 2. (x,y) is a feasible solution of Fair Range LP(D',w') of cost at most OPT_D
- 3. Any integral solution C of Fair Range LP(D', w') of cost z, can be converted in polynomial time to a feasible solution of Fair Range LP(D, w) of cost at most $4^p \cdot OPT_D + 2^{p-1} \cdot z$

Theorem

There exists a polynomial time algorithm that outputs a fractional solution (x, y) of Fair Range LP(D', w') of cost $9^p \cdot OPT_D$, where OPT_D is the cost of an optimal solution of Fair Range LP(D, w) and a collection of super balls $\{\mathcal{P}(v)\}_{v \in D'}$ that satisfies,

- 1. For every $v \in D', \mathcal{B}(v) \subseteq \mathcal{P}(v)$
- 2. For every $v \in D'$ and $u \in \mathcal{P}(v) \setminus \mathcal{B}(v)$, $x_{vu} > 0$ only if $\sum_{u \in \mathcal{B}(v)} y_u < 1$. Similarly, for every $v \in D'$ and $u \in F \setminus \mathcal{P}(v)$, $x_{vu} > 0$ only if $\sum_{u \in \mathcal{P}(v)} y_v < 1$
- 3. For every $v \in D'$, if $x_{vu} > 0$, then either $u \in \mathcal{P}(v)$ or $u \in \mathcal{B}(v')$ where v' denotes the nearest location to v in D'
- 4. For every v in D', $\sum_{u \in \mathcal{P}(v)} x_{vu} \ge \sum_{u \in \mathcal{B}(v)} x_{vu} \ge 1/2$
- 5. For every $v \in D', u \in \mathcal{P}(v) \backslash \mathcal{B}(v)$, $d(u, v) \leq 2d(v, v')$
- 6. The set of super balls, $\{\mathcal{P}(v)\}_{v \in D'}$ are disjoint

Lemma

- The optimal fractional solution of Structured LP(D', w') is a valid solution for fair range clustering on (D', w') and has cost at most $e^{O(p)} \cdot OPT_D$.
- **②** Consider a half-integral solution \tilde{y} of Structured LP(D', w') of cost z. Then, \tilde{y} is a feasible solution for Fair Range LP(D', w') with cost at most $\left(\frac{3}{2}\right)^p \cdot z$.
- The matrix corresponding to the constraints of Structured LP is a TU matrix.

If A is TU and b is integral, then for any cost vector c, the linear programs of the form $\{\min cx | Ax \ge b, x \ge 0\}$ has integral optima.

Algorithm 1 Partitioning Facilities.

- 1: Input: A set of locations D', half-integral vector y
- 2: for all location $v_i \in D'$ do
- 3: $R_i \leftarrow$ the minimum assignment cost of a unit of demand at v_i w.r.t. y: i.e., $R_i = \frac{1}{2}(d(v_i, u_{i_1})^p + d(v_i, u_{i_1})^p)$ where u_{i_1}, u_{i_2} are respectively the primary and secondary facilities serving v_i

$$4: \quad S_i \leftarrow \{u_{i_1}\} \cup \{u_{i_2}\}$$

5: end for

6:
$$D'' \leftarrow D', \overline{D} \leftarrow \emptyset$$

7: while D'' is nonempty do

8: let
$$v_i \leftarrow \operatorname{argmin}_{v_j \in D''} R_j$$

9: add v_i to \overline{D}

10: **remove** all locations $v_i \in D''$ such that $S_i \cap S_i \neq \emptyset$

11: end while